
LA TRANSIZIONE ENERGETICA IN PIANURA PADANA: UN'INFRASTRUTTURA CONDIVISA PER L'IDROGENO 29/11/2018 SPILAMBERTO (MO) - ITALIA

BIONICO BIOGAS MEMBRANE REFORMER FOR DECENTRALIZED H₂ PRODUCTION

Call: H2020-JTI-FCH-2014-1 Topic: FCH-02.2-2014 Decentralized hydrogen production from clean CO₂-containing biogas

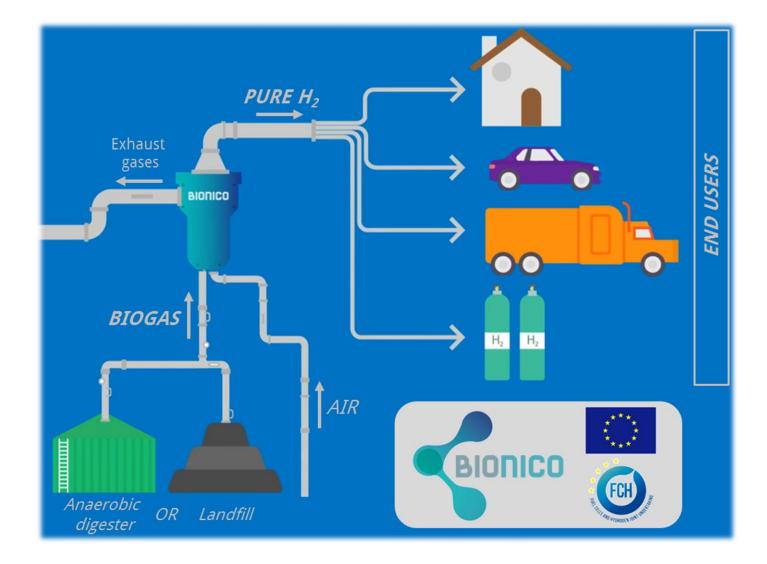
INTRODUCTION

*Fuel Cells and Hydrogen Joint Undertaking. Study on Hydrogen from renewable resources in the EU

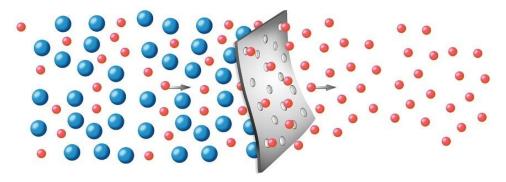
SUMMARY

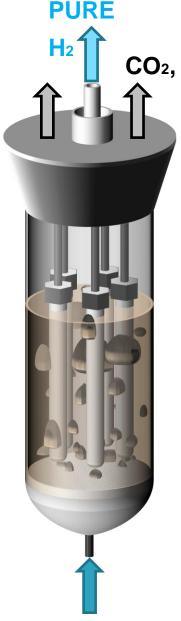
BIONICO aims at developing a **novel reactor** configuration at a **larger** scale to produce **100 kg/day** of **H**₂ from **biogas** production power plant based on:

- Design, develop and test a new concept reactor integrating hydrogen production and purification on a single unit
- Design, develop and testing of a catalytic membrane reactor for the production of highly-purity hydrogen from biogas, scaling up new H₂ selective membranes and catalyst production
- Develop a flexible system (including the advance control and BoP components) capable of producing pure hydrogen from biogas of different compositions in a unique reactor system.


The main idea of BIONICO is to design and demonstrate an **efficient biogas-to-hydrogen conversion system** at real plant conditions using process intensification.

CONCEPT

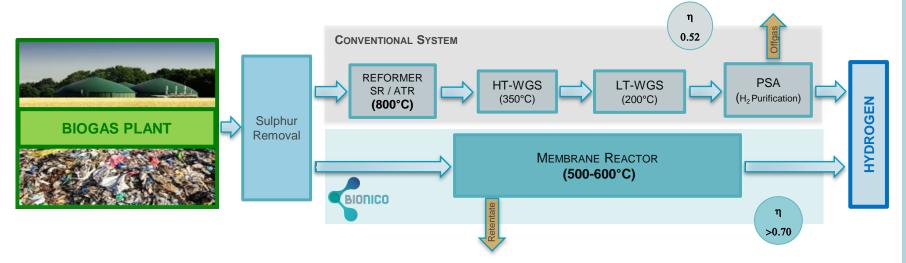

CO₂, N₂, CH₄


Fuel conversion and H₂ separation take place in a single reactor thanks to a membrane perm-selectivity for H₂

BG SR: $CH_4 + H_2O = CO + 3H_2$

WGS: $CO + H_2O = CO_2 + H_2$

Reaction zone Permeate zone



Feed (BG+H₂O+Air)

WHY BIONICO?

Reference Case Results								
	units	SR	ATR					
Biogas feed	Nm ³ /h	39.5	63.5					
Total Biogas Input	kW	229	368					
System efficiency	% _{LHV}	51.7	27.8					
Hydrogen delivery pressure	bar	20	20					
Hydrogen production cost	€/kg	4.21	6.37					

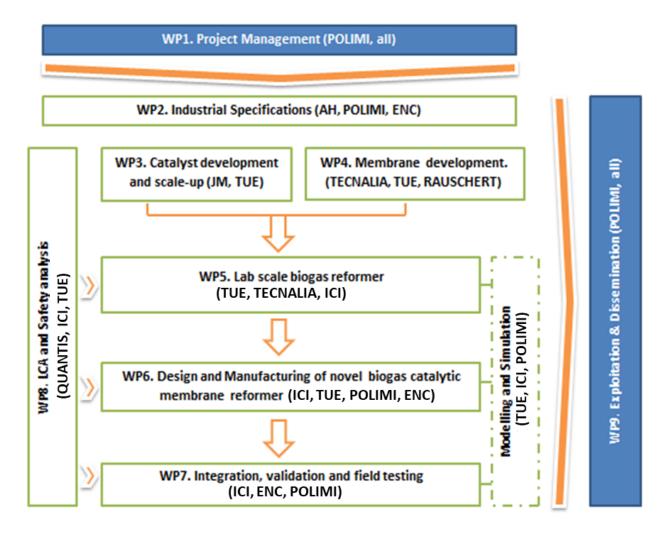
Two reference cases (based on SR and ATR) are identified to benchmark the performance of the BIONICO concept

The target of BIONICO is a system efficiency above $70\%_{LHV}$, which is about 25% higher than SR ($52\%_{LHV}$). The higher efficiency together with equipment savings will end up in lower hydrogen production costs.

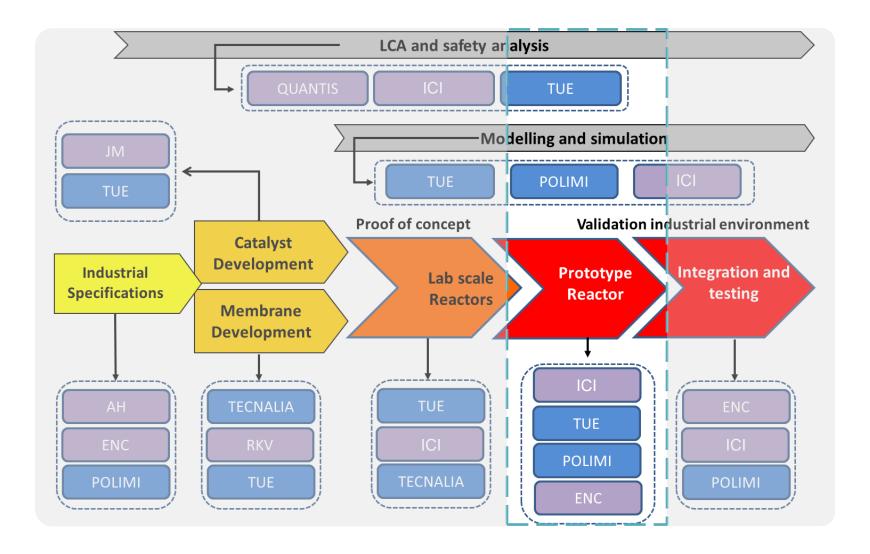
PARTNERSHIP

Multidisciplinary and complementary team: 8 top level European organisations from 7 countries including 3 Research Institutes and Universities and 4 representative top industries in different sectors (from catalyst to membranes to chemical and process engineering, etc.)

- POLIMI, Italy
- TU/e, The Netherlands
- Abengoa, Spain
- Tecnalia, Spain
- ICI caldaie, Italy
- Johnson Matthey, UK
- ENC Energy, Portugal
- Rauschert, Germany
- Quantis, Switzerland



WORK STRUCTURE



PARTNERSHIP SYNERGIES

NOVEL CATALYST

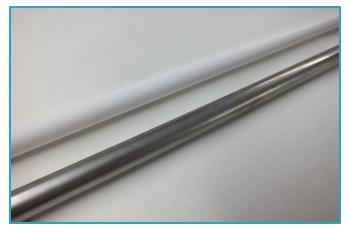
GOAL

Development of highly active reforming catalysts to produce hydrogen from diverse biogas mixture coupled with steam and air in a fluidised bed regime.

THREE YEARS PROJECT ACTIVITIES

- PGM doped alumina catalysts have been tested under biogas reforming conditions for dry, steam or autothermal reforming
- Coke formation resistance improvement

- 1st generation catalyst and 2nd generation catalyst able to work under fluidisation regime and at low temperature
- Final Catalyst formula produced and shipped to ICI



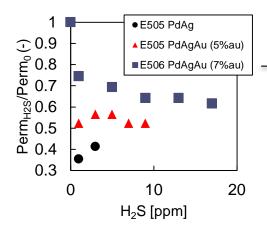
NOVEL MEMBRANE & SUPPORT

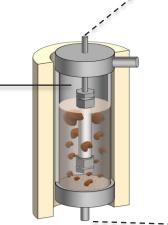
GOAL

Development of Pd based tubular supported membranes, for application in biogas reforming catalytic membrane reactors

- 1st generation membrane & support
- Installation of a new plating system for preparation of >40 cm long membranes.
- 2nd generation membrane & support.
 - Thin Pd-Ag layers have been deposited onto the 50 cm long finger-like supports.
- Definition of criteria for support quality
- Improvement of manufacturing procedure for membrane prototype production
- Membranes for prototype preparation

2nd generation thin film Pd-alloy supported membranes (>40 cm long)

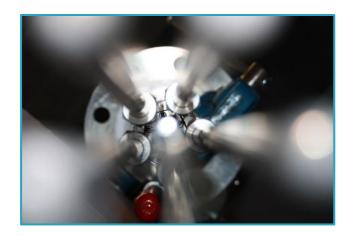



LAB SCALE REACTOR

GOAL

Definition of the lab scale reactors performances and identification of the best design for prototype pilot.

- Integration of catalyst and membrane
- One dimensional phenomenological model of the reactor
- Effect of Au addition on H₂S resistance of the membrane.



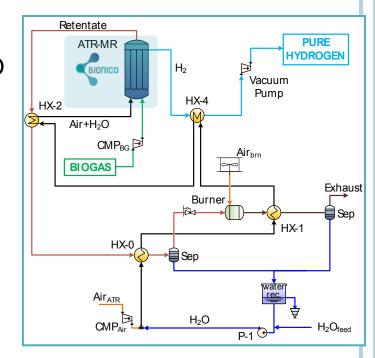
LAB SCALE REACTOR

GOAL

Definition of the lab scale reactors performances and identification of the

best design for prototype pilot.

- Successful description of concentration polarization in the reactor model
- Lab scale system with 5 membranes equal to the once that will be used in the pilot, as well as the catalyst, have been tested

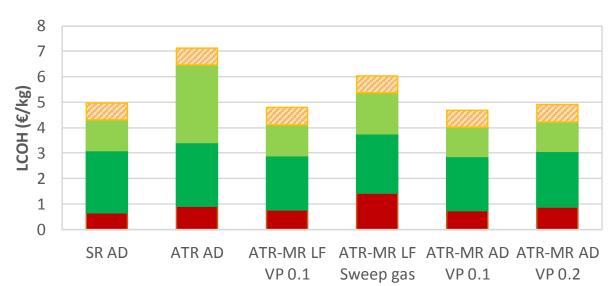


PROTOTYPE REACTOR

GOAL

Final design and construction of MR prototype for the production of approximately 100 kg/day of pure hydrogen

- A techno-economic optimization of BIONICO system was assessed
- Different operating conditions (T, p, S/C), biogas compositions and permeate side configuration were investigated
- Membrane reformer designed and manufactured by ICI

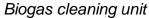


BIONICO PERFORMANCE

Parameter	units	BIONICO LF			BIONICO AD	
Temperature	°C	550	550	550	550	550
P feed	bar	12	10	20	12	12
P permeate	par	0.1	0.1	1.1/sw	0.1	0.2
BG Feed	Nm³/h	35.2	35.3	50.8	26.8	27.1
BG Input	kW	154.6	155.0	223.3	154.8	156.7
H ₂ production	kg/day	100	100	100	100	100
System efficiency	%	71.5	71.9	55.4	73.0	73.8
System efficiency (H ₂ @ 20 bar)	%	65.1	65.2	51.2	66.1	66.7
System efficiency (H ₂ @ 700 bar)	%	56.2	56.4	45.6	57.0	57.5

BIONICO PROTOTYPE REACTOR

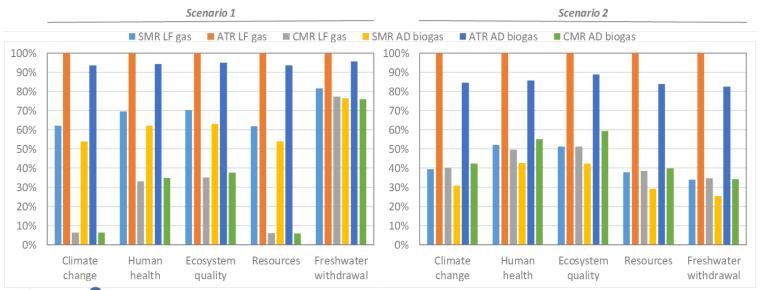
INTEGRATION& LESTING AT BIOGAS PRODUCTION SITE


GOAL

Final evaluation of the innovative process to directly produce pure hydrogen in a real biogas production site (ENC Landfill plant)

THREE YEARS PROJECT ACTIVITIES

- Definitions of input needed for starting the plant licensing procedure
- Evaluating the integration of the prototype reactor in the overall BIONICO system at biogas production site


LIFE CYCLE ASSESSMENT & SAFETY ISSUES

GOAL

Development strategy towards sustainable solutions

ACHIEVEMENTS

 Refined LCA modeling and results: BIONICO CMR only performs significantly better for most environmental indicators than reference systems when biogas utilization is limited (Scenario 1, Left)

DISSEMINATION ACTIVITY

BIONICO partners travelled for thousands of kilometers to disseminate the project and its achievements in the first three years of the project

- Papers (6)
 - Potentiality of a biogas membrane reformer for decentralized hydrogen production, *Chem. Eng. and Processing: Process Intensification, Open Access*
 - On concentration polarisation in a fluidized bed membrane reactor for biogas steam reforming: Modelling and experimental validation, Chemical Engineering Journal, Open Access
 - Palladium based membranes and membrane reactors for hydrogen production and purification: An overview of research activities at Tecnalia and TU/e, Int. Journal of Hydrogen Energy
 - Green hydrogen production from raw biogas: a techno-economic investigation of conventional processes using pressure swing adsorption unit, *Processes, Open Access*
 - Achievements of EU projects on membrane reactor for hydrogen production, Journal of Cleaner Production, open access
 - Effect of Au addition on hydrogen permeation and the resistance to H2S on Pd-Ag alloy membranes, *Journal of Membrane Science*

DISSEMINATION ACTIVITY

BIONICO partners travelled for thousands of kilometers to disseminate the project and its achievements in the first three years of the project

- Presentations (12+) & Posters (7)
- 2018 Life cycle assessment and economic analysis of an innovative biogas membrane reformer for hydrogen production, ICH2P 2018, Croatia
- 2018 15 Times More Memb. Area: How scaling-up affects biogas steam reforming in a fluidized-bed membrane reactor, ICIM 2018, Germany
- 2018 On the mass transfer rates in fluidized bed membrane reactors, ICIM 2018, Germany
- 2018 On the mass transfer rates in fluidized bed, ISCRE 25, Italy
- 2018 Palladium membrane reactors for hydrogen production, EHEC 2018, Spain
- 2018 Design and Demonstration of a lab-scale fluidized-bed membrane reactor for biogas steam reforming, EHEC 2018, Spain
- 2017 Stability of Ceramic supported PdAg membranes for hydrogen production in a fluidized bed membrane reactor, ICCMR, USA
- 2017 MRPI workshop: BIONICO activities mentioned together with other projects, MR4PI, Italy
- o 2016 Achievements of EU projects on membrane reactor for hydrogen production, SDEWES conference, Portugal
- o 2016 Palladium based membranes and membrane reactors for hydrogen production and purification, WHEC 2016, Spain
- 2016 Fluidized bed membrane reactors for hydrogen production using thin Pd-based (<5 μm) supported membranes, ICIM conference, USA
- 2016 Effect of the addition of Au in Pd-Ag alloy membranes on the hydrogen permeation performance under the presence of H2S, ICIM conference, USA
- 2017 Bionico project preliminary assessment of hydrogen production from biogas using a fluidised bed catalytic membrane reactor, Regatec, Pacengo, Italy
- 2017 Potentiality of a biogas membrane reformer for decentralized hydrogen production, MR4PI workshop, Verona Italy
- o 2016 Biogas membrane reformer for decentralized H2 production, EBA conference, Belgium
- o 2016 Biogas membrane reformer for decentralized H2 production, WHEC, Spain
- o 2016 Steam reforming of biogas in a fluidized bed membrane reactor for pure hydrogen production, Dutch Membrane Society, The Netherlands
- 2016 Preparation and characterization of thin Pd-ag-au supported membranes for hydrogen separation, Poster at EMS Summer School, Italy
- New Press Release in CIB magazine: <u>LINK</u>

THIS PROJECT HAS RECEIVED FUNDING FROM THE FUEL CELLS AND HYDROGEN 2 JOINT UNDERTAKING UNDER GRANT AGREEMENT NO 671459. THIS JOINT UNDERTAKING RECEIVES SUPPORT FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME HYDROGEN EUROPE AND N.ERGHY.

Grazie per l'attenzione!

Site: www.bionicoproject.eu

Email: info@bionicoproject.eu

LinkedIn Group: https://www.linkedin.com/groups/8513530

ResearchGate: https://www.researchgate.net/project/BIONICO

